skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Doesken, Nolan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Ice storms are important winter weather events that can have substantial environmental, economic, and social impacts. Mapping and assessment of damage after these events could be improved by making ice accretion measurements at a greater number of sites than is currently available. There is a need for low-cost collectors that can be distributed broadly in volunteer observation networks; however, use of low-cost collectors necessitates understanding of how collector characteristics and configurations influence measurements of ice accretion. A study was conducted at the Hubbard Brook Experimental Forest in New Hampshire that involved spraying water over passive ice collectors during freezing conditions to simulate ice storms of different intensity. The collectors consisted of plates composed of four different materials and installed horizontally; two different types of wires strung horizontally; and rods of three different materials, with three different diameters, and installed at three different inclinations. Results showed that planar ice thickness on plates was 2.5–3 times as great as the radial ice thickness on rods or wires, which is consistent with expectations based on theory and empirical evidence from previous studies. Rods mounted on an angle rather than horizontally reduced the formation of icicles and enabled more consistent measurements. Results such as these provide much needed information for comparing ice accretion data. Understanding of relationships among collector configurations could be refined further by collecting data from natural ice storms under a broader range of weather conditions. 
    more » « less
  2. Abstract In recent years, hail accumulations from thunderstorms have occurred frequently enough to catch the attention of the National Weather Service, the general public, and news agencies. Despite the extreme nature of these thunderstorms, no mechanism is currently in place to obtain adequate reports, measurements, or forecasts of accumulated hail depth. To better identify and forecast hail accumulations, the Colorado Hail Accumulation from Thunderstorms (CHAT) project was initiated in 2016 with the goals of collecting improved and more frequent hail depth reports on the ground as well as studying characteristics of storms that produce hail accumulations in Colorado. A desired outcome of this research is to identify predictors for hail-producing thunderstorms typically occurring along the Colorado Front Range that might be used as operational nowcast products in the future. During the 2016 convective season, we asked amateur meteorologists to send general information, photos, and videos on hail depth using social media. They submitted over 58 reports in Colorado with information on location, time, depth, and areal coverage of hail accumulations. We have analyzed dual-polarization radar and lightning mapping array data from 32 thunderstorms in Colorado, which produced between 0.5 and 50 cm of hail accumulation on the ground, to identify characteristics unique to storms with hail accumulations. This preliminary analysis shows how enhanced in-cloud hail presence and surface accumulation can be tracked throughout the lifetime of a thunderstorm using dual-polarization radar and lightning data, and how hail accumulation events are associated with large in-cloud ice water content, long hailfall duration, or a combination of these. 
    more » « less